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We present an extension of the generalized spectral decomposition method for the resolu-
tion of nonlinear stochastic problems. The method consists in the construction of a reduced
basis approximation of the Galerkin solution and is independent of the stochastic discret-
ization selected (polynomial chaos, stochastic multi-element or multi-wavelets). Two algo-
rithms are proposed for the sequential construction of the successive generalized spectral
modes. They involve decoupled resolutions of a series of deterministic and low-dimen-
sional stochastic problems. Compared to the classical Galerkin method, the algorithms
allow for significant computational savings and require minor adaptations of the determin-
istic codes. The methodology is detailed and tested on two model problems, the one-
dimensional steady viscous Burgers equation and a two-dimensional nonlinear diffusion
problem. These examples demonstrate the effectiveness of the proposed algorithms which
exhibit convergence rates with the number of modes essentially dependent on the spec-
trum of the stochastic solution but independent of the dimension of the stochastic approx-
imation space.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The increasing availability of computational resources and complexity of numerical models has stressed the need for effi-
cient techniques to account for uncertainties in model data and incomplete knowledge of the simulated system. Uncertainty
quantification (UQ) methods are designed to address this need by providing a characterization of the uncertainty in the mod-
el output. The uncertainty characterization and level of information provided depend on the UQ method selected and range
from the construction of simple confidence intervals to the determination of complete probability laws. Among the different
UQ methods available, the polynomial chaos (PC) methods [40,5,13] are receiving a growing interest as they provide a rich
uncertainty characterization thanks to their probabilistic character. In fact, PC methods for UQ have been constantly
improved and applied to problems with increasing complexity, (e.g. nonlinear ones) since the early works of Ghanem and
Spanos [13].

The fundamental concept of PC methods is to treat the UQ problem in a probabilistic framework, where the uncertain
model data are parameterized using a finite set of random variables which are subsequently regarded as the generator of
new dimensions along which the model solution is dependent. A convergent expansion along the uncertainty dimensions
is then sought in terms of orthogonal basis functions spanning an appropriate stochastic space. The expansion coefficients
. All rights reserved.
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provide a complete characterization of the uncertain solution in a convenient format allowing for straightforward post-treat-
ment and uncertainty analysis such as the assessment of the impact of specific uncertain data source on specific observables.

There are two distinct classes of techniques for the determination of the expansion coefficients. The non-intrusive tech-
niques, such as quadrature-based projections [34,20] and regressions [4], offer the advantage of requiring the availability of a
deterministic code only, but are limited by the need of computing the solution for a large number of realizations of the
uncertain data. Many works are currently focusing on numerical strategies for the minimization of the number of solutions
to be computed, essentially through the use of coarse or adaptive quadrature formulas [16,11]. The second class of tech-
niques relies on the model equations to derive a problem for the expansion coefficients through Galerkin-type procedures.
It yields accurate solutions but usually requires the resolution of a large set of equations calling for ad hoc numerical strat-
egies, such as Krylov type iterations [12,32,15] and preconditioning techniques [33,21], as well as an adaptation of the deter-
ministic codes. The method presented in this paper focuses on the minimization of the computational cost in Galerkin
methods for nonlinear models.

The essential motivation behind PC methods is the promise of obtaining accurate estimates of the uncertain solution with
a limited number of terms in the expansion. However, as applications and uncertainty settings gain in complexity, the
dimension of the expansion basis needed to yield accurate estimates quickly increases with significant increase in the com-
putational cost and memory requirements. These limitations have been partially addressed by using better suited stochastic
bases both in terms of probability distribution of the random variables [41] and approximation properties of the basis func-
tions using so-called finite element, multi-element or multi-wavelet bases [7,2,10,17,18,38]. An interesting feature of finite
element, multi-element and multi-wavelet bases is the possibility to enrich adaptively the stochastic approximation basis to
the sought solution (see for instance [18,38,39,19,22]).

Another way to minimize the size and numerical cost of Galerkin computations is to seek the approximate solution on a
reduced space. It is remarked that such reduction approach should not be opposed or understood as an alternative to the
adaptive methods mentioned above, but would actually further improve their efficiency since adaptive techniques require
the resolution of large Galerkin problems, though local ones. The main idea of reduced approximations is to take advantage
of the structure of the full approximation space, which results from the tensor product of the deterministic and stochastic
approximation spaces: if one is able to appropriately reduce the deterministic or stochastic approximation space, to a low-
dimensional sub-space, the size of the Galerkin problem to be solved drastically reduces too. Of course, the determination of
a low-dimensional sub-space that still accurately captures the essential features of the solution is not immediate since the
solution is unknown. In [9], the Galerkin problem is first solved on a coarse deterministic mesh to provide a coarse estimate
of the solution which is then decomposed into its principal components through Karhunen–Loeve (KL) expansion. The first
random coefficients of the KL expansion are then used as a reduced stochastic basis in the Galerkin problem considered now
on a fine deterministic mesh. Alternatively, in [23], a Neumann expansion of the operator is used to obtain an estimate of the
covariance operator of the solution. The dominant eigenspace of the approximate covariance operator is then considered as
the reduced deterministic (spatial) sub-space to be used subsequently in the Galerkin procedure. In fact, as for the first ap-
proach, this can be interpreted as a coarse a priori KL expansion of the solution. These two approaches have demonstrated
their effectiveness in reducing the size of the Galerkin problem solved in fine. However, the second approach, based on
Neumann expansion, is dedicated to linear problems, and the extension of the first approach to highly nonlinear problems,
such as for instance the Navier–Stokes equations, seems critical due to limitations in the possible deterministic coarsening:
the reduced basis may simply miss important features of the nonlinear solution. Another alternative, called the stochastic
reduced basis method [25,35], has been proposed for the a priori construction of reduced basis. In this method, dedicated
to linear problems, the reduced basis is a basis of a low-dimensional Krylov sub-space of the random operator associated
with the right-hand side. It captures approximately the active upper spectrum of the random operator. The main difference
with the above techniques is that the reduced basis is random. The method does not take part of the tensor product structure
of the function space and then does not circumvent the problem of memory requirements. Moreover, the components of the
solution on this basis, obtained through a Galerkin projection, leads to a system of equations which has not a conventional
form.

We thus investigate in this paper the extension of the so-called generalized spectral decomposition (GSD) method which
does not require one to provide a reduced basis (a priori or determined by alternative means) but that instead yields by itself
the ‘‘optimal” reduced basis.

The generalized spectral decomposition (GSD) method consists in searching an optimal decomposition of the solution u to
a stochastic problem under the form

PM
i¼1Uiki, where the Ui are deterministic functions while ki are random variables. In this

context, the set of ki (resp. of Ui) are understood as a reduced basis of random variables (resp. of deterministic functions).
Optimal decompositions could be easily defined if the solution u were known. Such a decomposition can for example be ob-
tained by a KL expansion (or classical spectral decomposition) of u, which is the optimal decomposition with respect to a
classical inner product. The GSD method consists in defining an optimality criterion for the decomposition which is based
on the equation(s) solved by the solution but not on the solution itself. The construction of the decomposition therefore does
not require to know the solution a priori or to provide a surrogate (approximation on coarser mesh or low order Neumann
expansion) as pointed previously. The GSD method was first proposed in [27] in the context of linear stochastic problems. In
the case of linear symmetric elliptic coercive problems, by defining an optimal decomposition with respect to the underlying
optimization problem, the functions Ui (resp. ki) were shown to be solutions of an eigen-like problem. Ad hoc algorithms,
inspired by power method for classical eigenproblems, have been proposed in [27] for the resolution of this eigen-like
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problem, while improved algorithms and in-depth analysis of the GSD method for a wider class of linear problems (in par-
ticular time-dependent problems) can be found in [28]. The main advantage of these algorithms is to separate the resolution
of a few deterministic problems and a few reduced stochastic problems (i.e. using a reduced basis of deterministic functions).
These algorithms lead to significant computational savings when compared to classical resolution techniques of stochastic
Galerkin equations. A first attempt for extending the GSD method to nonlinear problems has been investigated in [26]: algo-
rithms derived for the linear case were simply applied to subsequent linear stochastic problems arising from a classical non-
linear iterative solver. Reduced basis generated at each iteration were stored, sorted and re-used for subsequent iterations. In
this paper, we propose a ‘‘true” extension of the GSD to nonlinear problems, where we directly construct an optimal decom-
position of the solution with regard to the initial nonlinear problem.

The outline of the paper is as follows. In Section 2, we introduce a general formulation of nonlinear stochastic problems
and the associated stochastic Galerkin schemes. In Section 3, we present the extension of GSD for nonlinear problems. In
particular, we provide some basic mathematical considerations which motivate this extension. The GSD is interpreted as
the solution of an eigen-like problem and two ad hoc algorithms are proposed for building the decomposition. These algo-
rithms are inspired from the ones proposed in [27] in the context of linear stochastic problems. Then, the GSD method is
applied to two nonlinear models: the steady viscous Burgers equation (Sections 4 and 5) and a stationary diffusion equation
(Sections 6 and 7). Computational aspects of the GSD are detailed for each of these model problems. Finally, in Section 8, we
summarize the main findings of this work and we discuss future improvements and extensions of the method.

2. Nonlinear stochastic problems

2.1. Variational formulation

We adopt a probabilistic modeling of uncertainties and introduce an abstract probability space ðH;B; PÞ. H is the space of
elementary events, B a r-algebra on H and P a probability measure. We consider nonlinear problems having the following
semi-variational form:Given an elementary event h, find uðhÞ 2 V such that we have almost surely
bðuðhÞ; t; hÞ ¼ lðt; hÞ 8t 2 V; ð1Þ
where V is a given vector space, eventually of finite dimension, b and l are semilinear and linear forms respectively. The
forms b and l may depend on the elementary event h. In this paper, we consider that V does not depend on the elementary
event. It could be the case when considering partial differential equations defined on random domains [30,29]. On the sto-
chastic level, we introduce a suitable function space S for random variables taking values in R. The full variational formu-
lation of the problem writes:

Find u 2 V � S such that
Bðu; tÞ ¼ LðtÞ 8t 2 V � S; ð2Þ
where the semilinear and linear forms B and L have for respective expressions:
Bðu; tÞ ¼
Z

H
bðuðhÞ; tðhÞ; hÞdPðhÞ :¼ Eðbðu; t; �ÞÞ; ð3Þ

LðtÞ ¼
Z

H
lðtðhÞ; hÞdPðhÞ :¼ Eðlðt; �ÞÞ: ð4Þ
where Eð�Þ denotes the mathematical expectation.

2.2. Stochastic discretization

In this article, we consider a parametric modeling of uncertainties. Semilinear form b and linear form l are parametrized
using a finite set of N real continuous random variables n with known probability law Pn. Then, by the Doob–Dynkin’s lemma
[31], we have that the solution of problem (1) can be written in terms of n, i.e. uðhÞ � uðnÞ. The stochastic problem can then be
reformulated in the N-dimensional image probability space ðN;BN; PnÞ, where N � RN denotes the range of n. The expectation
operator has the following expression in the image probability space:
Eðf ð�ÞÞ ¼
Z

H
f ðnðhÞÞdPðhÞ ¼

Z
N

f ðyÞdPnðyÞ: ð5Þ
Since we are interested in finding an approximate stochastic solution of Eq. (1), function space S is considered as a finite
dimensional sub-space of L2ðN;dPnÞ, the space of real second order random variables defined on N. Different types of approx-
imation are available at the stochastic level: continuous polynomial expansion [13,41,36], piecewise polynomial expansion
[7], multi-wavelets [17,18]. At this point, it is stressed that the method proposed in this paper is independent of the type of
stochastic approximation used.

Remark 1. The choice of a suitable function space S is a non trivial question in the infinite dimensional case. Several
interpretations of stochastic partial differential equations (SPDE) are generally possible, e.g. by introducing the concept of
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Wick product between random fields, leading to well posed problems and then to different possible solutions [14,3,37].
These mathematical considerations are beyond the scope of this article. For nonlinear problems dealt with in this article,
where a classical interpretation of products between random fields is used [2,23], a possible choice could consist in classical
Banach spaces LpðN;dPnÞ � L2ðN;dPnÞ;2 6 p <1. Usual approximation spaces being contained and dense in these Banach
spaces, it ensures the consistency of the approximation.

In what follows, we will mainly use the initial probability space ðH;B; PÞ. The reader must keep in mind that at each mo-
ment, the elementary event h 2 H can be replaced by n 2 N in any expression.

3. General spectral decomposition for nonlinear problems

3.1. Principle

The generalized spectral decomposition (GSD) method consists in searching an approximate low-order decomposition of
the solution to problem (2):
uMðhÞ ¼
XM

i¼1

UikiðhÞ; ð6Þ
where Ui 2 V are deterministic functions while ki 2 S are random variables (i.e. real-valued functions of the elementary ran-
dom event). In this context, the set of ki (resp. of Ui) can be understood as a reduced basis of random variables (resp. of deter-
ministic functions). In this section, we will see in which sense optimal reduced basis can be thought as solutions of eigen-like
problems. Starting from this interpretation, we will propose two simple and efficient algorithms for building the generalized
spectral decomposition.

3.2. Definition of an optimal couple ðU; kÞ

First, let us explain how to define an optimal couple ðU; kÞ 2 V � S. The proposed definition is a direct extension to the
nonlinear case of the definition introduced in [28].

It is remarked that if U was known and fixed, the following Galerkin orthogonality criterium would lead to a suitable def-
inition for k:
BðkU; bUÞ ¼ LðbUÞ 8b 2 S: ð7Þ
In other words, it consists in defining kU as the Galerkin approximation of problem (2) in the sub-space U � S � V � S.
Alternatively, if k was known and fixed, the following Galerkin orthogonality criterium would lead to a suitable definition

for U:
BðkU; kVÞ ¼ LðkVÞ 8V 2 V: ð8Þ
In other words, it consists in defining kU as the Galerkin approximation of problem (2) in the sub-space V � k � V � S.
As a shorthand notation, we write k ¼ f ðUÞ the solution of Eq. (7) and U ¼ FðkÞ the solution of Eq. (8). It should be clear

that a natural definition of an optimal couple ðU; kÞ consists in satisfying simultaneously Eqs. (7) and (8). The problem can
then write: find k 2 S and U 2 V such that
U ¼ FðkÞ and k ¼ f ðUÞ: ð9Þ
The problem can be formulated on U as follows: find U 2 V such that
U ¼ F � f ðUÞ :¼ TðUÞ; ð10Þ
where mapping T is a homogeneous mapping of degree 1:
TðaUÞ ¼ aTðUÞ 8a 2 R�: ð11Þ
This property comes from properties of f and F, which are both homogeneous mappings of degree (	1):
8a 2 R�; f ðaUÞ ¼ a	1f ðUÞ; FðakÞ ¼ a	1FðkÞ: ð12Þ
The homogeneity property of T allows to interpret Eq. (10) as an eigen-like problem where the solution U is interpreted as a
generalized eigenfunction.

By analogy with classical eigenproblems, each eigenfunction is associated with a unitary eigenvalue. The question is then:
how to define the best generalized eigenfunction among all possible generalized eigenfunctions ? A natural answer is: the
best U is the one which maximizes the norm kUf ðUÞk of the approximate solution Uf ðUÞ, i.e. such that it gives the highest
contribution to the generalized spectral decomposition. In order to provide a more classical writing of an eigenproblem,
we now rewrite the approximation as aUf ðUÞ=kUf ðUÞk, with a 2 Rþ. The problem is then to find a couple ðU;aÞ 2 V � Rþ such
that a is maximum and such that the following Galerkin orthogonality criterium is still satisfied:
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aU ¼ Fðf ðUÞ=kUf ðUÞkÞ ¼ kUf ðUÞkTðUÞ :¼ eT ðUÞ: ð13Þ
The mapping r : U 2 V # kUf ðUÞk 2 Rþ is a homogeneous mapping of degree 0. Then, mapping eT , which is a simple rescaling
of T, is still homogeneous of degree 1, so that Eq. (13) can be interpreted as an eigen-like problem on eT : find ðU;aÞ 2 V � Rþ

such that
eT ðUÞ ¼ aU ð14Þ
U is a generalized eigenfunction of eT if and only if it is a generalized eigenfunction of T. A generalized eigenfunction is asso-
ciated with a generalized eigenvalue a ¼ rðUÞ of mapping eT . The best U 2 V then appears to be the generalized eigenfunction
associated with the dominant generalized eigenvalue of eT .

Remark 2. In the case where B is a bounded elliptic coercive bilinear form, it is proved in [27] that the dominant generalized
eigenfunction U is such that it minimizes the error ðu	 Uf ðUÞÞ with respect to the norm induced by B.

Remark 3. Let us note that the previous reasoning can be made on a problem formulated on k, writing: find ðk;aÞ 2 S � Rþ

such that
eT �ðkÞ ¼ ak; ð15Þ
where eT �ðkÞ ¼ r�ðkÞf � FðkÞ, with r�ðkÞ ¼ kFðkÞkk. We can easily show that if U is a generalized eigenfunction of eT , then
k ¼ f ðUÞ is a generalized eigenfunction of eT �, associated with the generalized eigenvalue r�ðkÞ ¼ rðf ðUÞÞ. Problems on U
and k are completely equivalent. In this article, we arbitrarily focus on the problem on U.
3.3. A progressive definition of the decomposition

Following the previous observations, we now propose to build progressively the generalized spectral decomposition de-
fined in Eq. (6). The couples ðUi; kiÞ are defined one after the others. To this end, let us assume that uM is known. We denote
ðU; kÞ 2 V � S the next couple to be defined. A natural definition of this couple still consists in satisfying the two following
Galerkin orthogonality criteria:
BðuM þ kU; bUÞ ¼ LðbUÞ 8b 2 S; ð16Þ
BðuM þ kU; kVÞ ¼ LðkVÞ 8V 2 V: ð17Þ
As a shorthand notation, we write k ¼ fMðUÞ the solution of Eq. (16) and U ¼ FMðkÞ the solution of Eq. (17). This problem can
still be formulated on U as follows: find U 2 V such that
U ¼ FM � fMðUÞ :¼ TMðUÞ: ð18Þ
where mapping TM is an homogeneous mapping of degree 1. Problem (18) can still be interpreted as an eigen-like problem.
In fact, by analogy with classical eigenproblems, operator TM can be interpreted as a ‘‘deflation” of the initial operator T (see
[28] for details).

Introducing rMðUÞ ¼ kUfMðUÞk allows to reformulate problem (18) as an eigen-like problem on mappingeT M ¼ rMðUÞTMðUÞ: find the dominant generalized eigenpair ðU;aÞ 2 V � Rþ, satisfying:
eT MðUÞ ¼ aU; ð19Þ
where a ¼ rMðUÞ appears to be the generalized eigenvalue of eT M associated with the generalized eigenfunction U.
Finally, denoting by ðUi;ri	1ðUiÞÞ the dominant eigenpair of operator eT i	1, the generalized decomposition of order M is

then defined as
uM ¼
XM

i¼1

Uifi	1ðUiÞ ¼
XM

i¼1

ri	1ðUiÞUifi	1ðUiÞ=kUifi	1ðUiÞk; ð20Þ
where for consistency, we let u0 ¼ 0.

3.4. Algorithms for building the decomposition

With the previous definition, optimal couples ðUi; kiÞ appears to be dominant eigenfunctions of successive eigen-like
problems. The following algorithms, initially proposed in [27] for linear stochastic problems, are here extended to the non-
linear framework. In the following, we denote WM ¼ ðU1; . . . ;UMÞ 2 ðVÞM ;KM ¼ ðk1; . . . ; kMÞ 2 ðSÞM and
uMðhÞ :¼WM �KMðhÞ: ð21Þ
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3.4.1. Basic power-type method: Algorithm 1
In order to find the dominant eigenpair ðU;rMðUÞÞ of eigen-like problem (19), we suggest to use a power-type algorithm.

It consists in building the series Uðkþ1Þ ¼ eT MðUðkÞÞ, or equivalenty Uðkþ1Þ ¼ cðkÞeT MðUðkÞÞ, where cðkÞ 2 R is a rescaling factor. We
emphasize that the rescaling factor has no influence on the convergence of this series, due to homogeneity property of map-
ping eT M (inherited from those of fM and FM). This strategy leads to Algorithm 1, which can be interpreted as a power-type
algorithm with deflation for building the whole decomposition.

Algorithm 1. Power-type algorithm

1: for i ¼ 1; . . . ;M do
2: Initialize k 2 S

3: for k ¼ 1; . . . ; kmax do
4: U :¼ Fi	1ðkÞ
5: U :¼ U=kUkV (normalization)
6: k ¼ fi	1ðUÞ
7: Check convergence on ri	1ðUÞ (tolerance �s)
8: end for
9: Wi :¼ ðWi	1;UÞ
10: Ki :¼ ðKi	1; kÞ
11: Check convergence
12: end for

The main advantage of this algorithm is that it only requires the resolution of problems k ¼ f ðUÞ and U ¼ FðkÞ which are
respectively a simple nonlinear equation on k and a nonlinear deterministic problem.

It is well known for classical eigenproblems that the power method does not necessarily converge or can exhibit a very
slow convergence rate. This is the case when the dominant eigenvalue is of multiplicity greater than one or when dominant
eigenvalues are very close. However, a convergence criterium based on eigenfunction U is not adapted to our problem. In
fact, a pertinent evaluation of convergence should be based on the eigenvalue, which in our case corresponds to the contri-
bution ri	1ðUÞ of a couple ðU; fi	1ðUÞÞ to the generalized spectral decomposition. In the case of multiplicity greater than one, a
convergence of the eigenvalue indicates that the current iterate U should be a good candidate for maximizing the contribu-
tion to the generalized decomposition. When dominant eigenvalues are very close, a slow convergence rate can be observed
on the eigenvalue when approaching the upper spectrum. However, close eigenvalues are associated to eigenfunctions
which have similar contributions to the decomposition. Therefore, any of these eigenfunctions seems to be a rather good
choice, the rest of the upper spectrum being explored by subsequent ‘‘deflations” of the operator. The above remarks indicate
that a relatively coarse convergence criterium (tolerance �s) can be used for the power iterates:
jri	1ðUðkÞÞ 	 ri	1ðUðk	1ÞÞj 6 �sri	1ðUðkÞÞ ð22Þ
This will be illustrated in numerical examples.

Remark 4. A natural choice for the norm kUkk on V � S consists in taking a tensorization of norms defined on V and S. The
contribution of Uf ðUÞ can then be simply written kUf ðUÞk ¼ kUkVkf ðUÞkS . In Algorithm 1, U being normalized, the evaluation
of ri	1ðUÞ (step (7)) then only requires the evaluation of kkkS .

Remark 5. For computational and analysis purposes, one may want to perform an orthonormalization of the decomposition.
This orthonormalization can concern the deterministic basis WM or the stochastic basis KM . In both cases, it involves a non
singular M �M matrix R such that the linear transformation writes WM  WM � R (resp. KM  KM � R) for the orthonormal-
ization of WM (resp. KM). To maintain the validity of the decomposition, the inverse transformation R	1 has also to be applied
to the complementary basis, i.e. KM  KM � R	1 (resp. WM  WM � R	1).
3.4.2. Improved power-type method: Algorithm 2
A possible improvement of Algorithm 1 consists in updating the reduced random basis KM every time a new couple is

computed, while keeping unchanged the deterministic basis WM . We denote VM ¼ spanfUi; i ¼ 1; . . . ;Mg � V the sub-space
spanned by WM; on this sub-space, Eq. (2) becomes: find uM 2 VM � S such that
BðuM; tMÞ ¼ LðtMÞ 8tM 2 VM � S: ð23Þ
This problem is equivalent to find KM 2 ðSÞM such that
BðWM �KM;WM �K�MÞ ¼ LðWM �K�MÞ 8K�M 2 ðSÞ
M: ð24Þ
We write KM ¼ f0ðWMÞ the solution to Eq. (24), which is a set of M coupled nonlinear stochastic equations. The improved
algorithm including stochastic basis updates is:
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Algorithm 2. Power-type algorithm with updating of the random basis

1: for M ¼ 1 . . . Mmax do
2: Do steps 2 to 10 of Algorithm 1
3: Orthonormalize WM (optional)
4: Update KM ¼ f0ðWMÞ
5: Check convergence
6: end for

In the very particular case where bð�; �Þ is bilinear and deterministic, it can be proved that the updating does not modify
the decomposition [28]. This can be explained by the fact that dominant eigenfunctions of successive operators eT M are opti-
mal regarding the initial problem, i.e. are dominant eigenfunctions of the initial operator eT ¼ eT 0. In the general case, this
property is not verified and makes that this updating can lead to a significant improvement of the accuracy of the decom-
position. This will be illustrated in numerical examples.

Remark 6. The orthonormalization step (3) of Algorithm 2 is actually optional, as it does not affect the reduced spaces
generated. Still, for numerical and analysis purposes, it is often preferred to work with orthonormal functions.
3.5. Extension to affine spaces

In many situations, e.g. when dealing with non-homogeneous boundary conditions, the solution u is to be sought in an
affine space, with an associated vector space denoted V � S. In order to apply the GSD method, the problem is classically
reformulated in vector space V � S by introducing a particular function u0 of the affine space. The variational problem (2)
becomes:

Find u ¼ u0 þ ~u, with ~u 2 V � S, such that
Bðu0 þ ~u; tÞ ¼ LðtÞ 8V � S: ð25Þ
Then, now denoting ~uM ¼WM �KM and extending the definition of uM to
uM ¼ u0 þ ~uM ¼ u0 þWM �KM; ð26Þ
it is seen that the Algorithms 1 and 2 apply immediately for the construction of the generalized spectral decomposition ~uM of
~u. This procedure is used in the next section, which details the application of the proposed iterative methods to the Burgers
equation.

Remark 7. The definition of a particular function u0 is usual in the context of Galerkin approximation methods. For example,
when dealing with non-homogeneous Dirichlet boundary conditions and when using finite element approximation at the
spatial level, it simply consists in defining a finite element function with ad hoc nodal values at the boundary nodes. The
problem on ~u 2 V � S is then associated with homogeneous Dirichlet boundary conditions.
4. Application to Burgers equation

4.1. Burgers equation

We consider the stochastic steady Burgers equation on the spatial domain X ¼ ð	1;1Þ, with random (but uniform) vis-
cosity l 2 L2ðH;dPÞ. The stochastic solution,
u : ðx; hÞ 2 X�H # uðx; hÞ 2 R; ð27Þ
satisfies almost surely
u
ou
ox
	 l o2u

ox2 ¼ 0; 8x 2 X: ð28Þ
This equation has to be complemented with boundary conditions. We assume deterministic boundary conditions:
uð	1; hÞ ¼ 1; uð1; hÞ ¼ 	1 ða:s:Þ: ð29Þ
We further assume that lðhÞP a > 0 almost surely to ensure a physically meaningful problem. Thanks to the mathematical
properties of the Burgers equation (the solution is bounded by its boundary values), we have almost surely uðx; hÞ 2 ½	1;1

and uðx; �Þ 2 L2ðH;dPÞ for all x 2 ½	1;1
.
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4.2. Variational formulation

We introduce the following function space:
U ¼ ft 2 H1ðXÞ; tð	1Þ ¼ 1; tð1Þ ¼ 	1g: ð30Þ
The space U is affine, and we denote V the corresponding vector space:
V ¼ ft 2 H1ðXÞ; tð	1Þ ¼ 0; tð1Þ ¼ 0g: ð31Þ
The stochastic solution uðx; hÞ is sought in the tensor product function space U � S. It is solution of the variational problem
(25) with
bðu; t; hÞ ¼
Z

X
lðhÞ ou

ox
ot
ox
þ u

ou
ox

t
� �

dx; ð32Þ

lðt; hÞ ¼ 0: ð33Þ
Remark 8. The previous variational formulation implicitly assumes that S � L2ðH;dPÞ is finite dimensional.

To detail the methodology, we write
bðu; t; hÞ ¼ lðhÞaðu; tÞ þ nðu;u; tÞ; ð34Þ
where a and n are bilinear and trilinear forms respectively, defined as:
aðu; tÞ ¼
Z

X

ou
ox

ot
ox

dx; ð35Þ

nðu; t;wÞ ¼
Z

X
u

ot
ox

wdx: ð36Þ
Remark 9. It is seen that the forms a and n have no explicit dependence with regards to the elementary event h.
Generalization of the methodology to situations where forms depend on the event is however immediate.

The boundary conditions being deterministic, an obvious choice for u0 2 U is u0ðx; hÞ ¼ 	x. Then, to simplify the notations,
we define k0 ¼ 1 and U0 ¼ u0 such that the approximate solution uM writes:
uM ¼ u0 þ
XM

i¼1

kiUi ¼
XM

i¼0

kiUi ð37Þ
4.3. Application of GSD algorithm to the Burgers equation

Algorithms 1 and 2 can now be applied to perform the generalized spectral decomposition of the solution. We now detail
the main ingredients of the algorithms, namely steps (4) and (6) of Algorithm 1, and the update step of Algorithm 2.

4.3.1. Resolution of U ¼ FMðkÞ
To compute U ¼ FMðkÞ, one has to solve for U the Eq. (17). This is equivalent to solve for U the following deterministic

problem (remember that k is given):
BMðkU; kVÞ ¼ LMðkVÞ 8V 2 V: ð38Þ
where 8u; t 2 V � S,
BMðu; tÞ � BðuM þ u; tÞ 	 BðuM; tÞ; ð39Þ
LMðtÞ � LðtÞ 	 BðuM; tÞ: ð40Þ
Substracting BðuM ; tÞ on both sides of (17) to yield (38) ensures that the right-hand side LM vanishes whenever uM solves the
weak form of the stochastic Burgers equation. This manipulation is however purely formal. With some elementary manip-
ulations, it is easy to show that
BMðkU; kVÞ ¼ EðkklÞaðU;VÞ þ EðkkkÞnðU;U;VÞ þ
XM

i¼0

EðkikkÞ½nðUi;U;VÞ þ nðU;Ui;VÞ
; ð41Þ
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LMðkVÞ ¼ 	
XM

i¼0

EðlkikÞaðUi;VÞ 	
XM

i;j¼0

EðkkikjÞnðUi;Uj;VÞ: ð42Þ
Therefore, one can recast the equation on U in the formal way:
~laðU;VÞ þ nðU;U;VÞ þ nðeU ;U;VÞ þ nðU; eU ;VÞ ¼ 	að�U;VÞ 	 nð1; bZ ;VÞ; 8V 2 V; ð43Þ
where
~l ¼ EðkklÞ
Eðk3Þ

; eU ¼XM

i¼0

EðkikkÞ
EðkkkÞ Ui; ð44Þ

�U ¼
XM

i¼0

EðlkikÞ
EðkkkÞ Ui; bZ ¼ 1

2

XM

i;j¼0

EðkikjkÞ
EðkkkÞ UiUj; ð45Þ
Eq. (43) shows that U is the solution of a nonlinear deterministic problem, with homogeneous boundary conditions, involv-
ing a quadratic nonlinearity term ðnðU;U;VÞÞ which reflects the nonlinearity of the original Burgers equation. In fact, the
resulting problem for U has the same structure as the weak form of the deterministic Burgers equations, with some addi-
tional (linear) terms expressing the coupling of U with uM (due to the nonlinearity) and a right-hand side accounting for
the equation residual for u ¼ uM . As a result, a standard nonlinear solver can be used to solve this equation, e.g. one can
re-use a deterministic steady Burgers solver with minor adaptations.

Remark 10. At first thought, Eq. (43) suggests that a robust non linear solver is needed for its resolution, since a priori the
effective viscosity ~l may become negative and experience changes by orders of magnitudes in the course of the iterative
process. However, one can always make use of the homogeneity property
U
a
¼ FMðakÞ; 8a 2 R�; ð46Þ
to rescale the problem and fit solver requirements if any. Note that Eq. (46) together with Eq. (43) also indicate that the nat-
ure of the nonlinear deterministic problems to be solved is preserved along the course of the iterations. For instance, the
effective viscosity goes to zero as j k j! 1 but the problem does not degenerate to an hyperbolic one since the right-hand
side also goes to zero and U satisfies homogeneous boundary conditions.
4.3.2. Resolution of k ¼ fMðUÞ
The random variable k 2 S is solution of the variational problem:
BMðkU; bUÞ ¼ LMðbUÞ 8b 2 S: ð47Þ
After some manipulations, this equation is found to be equivalent to:
EðbkkÞnðU;U;UÞ þ EðblkÞaðU;UÞ þ
XM

i¼0

EðbkikÞ½nðU;Ui;UÞ þ nðUi;U;UÞ


¼ 	
XM

i¼0

EðblkiÞaðUi;UÞ 	
XM

i;j¼0

EðbkikjÞnðUi;Uj;UÞ: ð48Þ
This is a simple stochastic quadratic equation on k: a standard nonlinear solver can be used for its resolution.

4.3.3. Resolution of KM ¼ f0ðWMÞ
To update KM ¼ ðk1; . . . ; kMÞ 2 ðSÞM , one has to solve:
Bðu0 þWM �KM ;WM �K�MÞ ¼ LðWM �K�MÞ 8K�M 2 ðSÞ
M
: ð49Þ
This equation can be split into a system of M equations:
8k 2 f1; . . . ;Mg; Bðu0 þWM �KM ;UkbkÞ ¼ LðUkbkÞ 8bk 2 S: ð50Þ
Introducing the previously defined forms, it comes:
XM

i¼0

lðhÞkiðhÞaðUi;UkÞ þ
XM

i;j¼0

kikjnðUi;Uj;UkÞ ¼ 0; 8k 2 f1; . . . ;Mg: ð51Þ
Again, it is seen that the updating step consists in solving a system of quadratic nonlinear equations for the fkigM
i¼1. A stan-

dard nonlinear solver can be used for this purpose.
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4.4. Spatial discretization

Let us denote PNxþ1ðXÞ the space of polynomials of degree less or equal to Nx þ 1 on X. We define the approximation vec-
tor space Vh as:
Vh ¼ ft 2 PNxþ1ðXÞ; tð	1Þ ¼ 0; tð1Þ ¼ 0g � V: ð52Þ
Let xi¼f0;...;Nxþ1g be the Nx þ 2 Gauss–Lobatto points [1] of the interval [	1, 1], such that
x0 ¼ 	1 < x1 < � � � < xNx < xNxþ1 ¼ 1: ð53Þ
We denote Li2f1;...;NxgðxÞ 2 PNxþ1, the Lagrange polynomials constructed on the Gauss–Lobatto grid:
LiðxÞ ¼
YNxþ1

j¼0
j–i

x	 xj

xi 	 xj
: ð54Þ
These polynomials satisfy
LiðxjÞ ¼
0 if i–j

1 if i ¼ j

�
8j ¼ 0; . . . ;Nx þ 1; ð55Þ
and form a basis of Vh:
Vh ¼ spanfLi; i ¼ 1; . . . ;Nxg: ð56Þ
For any t 2 Vh, we have
tðxÞ ¼
XNx

i¼1

tiLiðxÞ; ti ¼ tðxiÞ: ð57Þ
The derivative of t 2 Vh has for expression:
ot
ox
¼
XNx

i¼1

tiL0iðxÞ; L0i �
oLi

ox
: ð58Þ
The bilinear and trilinear forms a and n are evaluated using the quadrature formula over the Gauss–Lobatto points [6]. Spe-
cifically, for u; t 2 Vh, we have
aðu; tÞ ¼
Z

X

ou
ox

ot
ox

dx ¼
Z

X

XNx

i¼1

uiL0i

 ! XNx

i¼1

tiL0i

 !
dx ¼

XNx

i;j¼1

uitj
Z

X
L0iðxÞL

0
jðxÞdx ¼

XNx

i;j¼1

uitjai;j; ð59Þ
where
ai;j �
XNxþ1

k¼0

L0iðxkÞL0jðxkÞxk

 !
; ð60Þ
with xk2f0;...;Nxþ1g the Gauss–Lobatto quadrature weights [1]. Similarly, for u; t;w 2 Vh, we have
nðu; t;wÞ ¼
Z

X
u

ot
ox

wdx �
XNxþ1

k¼0

uðxkÞ
XNxþ1

i¼0

tiL0iðxkÞwðxkÞ
 !

xk �
XNx

k¼1

XNxþ1

i¼0

ni;kuktiwk; ð61Þ
where ni;k � L0iðxkÞxk. The same expression holds for u0 R Vh.

4.5. Stochastic discretization

In the results presented hereafter, the random viscosity l is parametrized using a set of N independent real continuous
second order random variables, n ¼ fn1; . . . ; nNg,
lðhÞ ¼ lðnðhÞÞ: ð62Þ
We denote N the range of n and Pn the known probability law of n. Since random variables ni are independent, we have for
y ¼ ðy1; . . . ; yNÞ 2 RN
dPnðyÞ ¼
YN

i¼1

pni
ðyiÞdyi; ð63Þ
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Let ðN;BN; PnÞ be the associated probability space. The stochastic solution is then sought in the image probability space
ðN;BN; PnÞ instead of ðH;B; PÞ, i.e. we compute uðnÞ. Furthermore, the expectation operator has the following expression in
the image probability space:
Eðf ð�ÞÞ ¼
Z

H
f ðnðhÞÞdPðhÞ ¼

Z
N

f ðyÞdPnðyÞ: ð64Þ
It is clear from this relation that if f 2 L2ðH;dPÞ then f 2 L2ðN;dPnÞ, the space of second order random variables spanned by n.
To proceed with the determination of the numerical solution, one has to construct a finite dimensional approximation space
S � L2ðN;dPNÞ. Different discretizations are available at the stochastic level (continuous polynomial expansion, piecewise
polynomial expansions, multi-wavelets, . . .). At this point, it is stressed that the proposed GSD algorithms are independent
of the type of stochastic discretization used. In the following, we rely on classical Generalized Polynomial Chaos expansions,
which consist in defining the stochastic space as
S ¼ spanfW0; . . . ;WPg; ð65Þ
where the Wi are mutually orthogonal random polynomials in n, with total degree less or equal to No. The orthogonality of
the random polynomials writes
EðWiWjÞ ¼ EðW2
i Þdij: ð66Þ
The dimension of the stochastic sub-space is therefore given by
dimðSÞ ¼ P þ 1 ¼ ðN þ NoÞ!
N!No!

; ð67Þ
and a random variable b 2 S has for expansion
bðnÞ ¼
XP

i¼0

biWiðnÞ: ð68Þ
Specifically, the ki 2 S of the GSD of the solution will have expansions of the form:
ki ¼
XP

k¼0

kk
i WkðnÞ:
4.6. Solvers

4.6.1. U ¼ FMðkÞ
With the spatial discretization introduced previously, one has to solve for U 2 Vh the following set of Nx non linear equa-

tions (corresponding to (43)):
GkðU1; . . . ;UNx ; kÞ ¼ 0; k ¼ 1; . . . ;Nx; ð69Þ
where
GkðU1; . . . ;UNx ; kÞ ¼ ~l
XNx

i¼1

ai;kUi þ
XNx

i¼1

ni;k UkUi þ eUkUi þ Uk eUi
� �

þ
XNx

i¼1

ai;k
�Ui þ

XNx

i¼1

ni;k
bZi; ð70Þ
with
~l ¼ EðkklÞ
EðkkkÞ ;

eUk ¼
XM

i¼0

EðkikkÞ
EðkkkÞ Uk

i ; ð71Þ

�Uk ¼
XM

i¼0

EðlkikÞ
EðkkkÞ Uk

i ;
bZk ¼ 1

2

XM

i;j¼0

EðkikjkÞ
EðkkkÞ Uk

i Uk
j ; ð72Þ
and the coefficients ai;k and ni;k defined in paragraph 4.4. Also, since the stochastic expansion coefficients of k and the ki are
given, the expectations are classically evaluated analytically. For instance,
EðkikjkÞ ¼
XP

l¼0

XP

m¼0

XP

n¼0

Tlmnk
l
ik

m
j kn; Tlmn ¼ EðWlWmWnÞ:
In this work, we have used a classical Newton method to solve (69).



A. Nouy, O.P. Le Maı̂tre / Journal of Computational Physics 228 (2009) 202–235 213
4.6.2. k ¼ fMðUÞ
Introducing the stochastic expansions of l and of the ki, the expansion coefficients of k satisfy the following set of P þ 1

nonlinear equations:
gkðk0; . . . ; kP ; UÞ ¼
XP

i;j¼0

cijkk
ikj þ

XP

i¼0

dikk
i þ ek ¼ 0; k ¼ 0; . . . ; P; ð73Þ
where
cijk ¼ EðWiWjWkÞnðU;U;UÞ;

dik ¼
XP

j¼0

EðWiWjWkÞ ljaðU;UÞ þ
XM

l¼0

kj
lðnðU;Ul;UÞ þ nðUl;U;UÞÞ

" #
;

ek ¼
XP

i;j¼0

EðWiWjWkÞ li
XM

l¼0

kj
laðUl;UÞ þ

XM

l;m¼0

ki
lk

j
mnðUl;Um;UÞ

" #
:

This set of equations can be solved using efficient standard techniques involving exact Jacobian computation. In this work,
we have used the minpack subroutines [24] to solve (73).

4.6.3. KM ¼ f0ðWMÞ
The stochastic expansion of KM is
KM ¼
XP

i¼0

Ki
MWi: ð74Þ
Introducing this expansion in (51), one obtains a set of M � ðP þ 1Þ nonlinear equations, which are:
gk;qðK0
M; . . . ;KP

M ; WMÞ ¼
XP

l;m¼0

EðWlWmWqÞ
XM

i¼0

llkm
i aðUi;UkÞ þ

XM

i;j¼0

kl
ik

m
j nðUi;Uj;UkÞ

" #
¼ 0; k ¼ 1; . . . ;M; q ¼ 0; . . . ; P:

ð75Þ
Again, we rely on the minpack library to solve this set of nonlinear equations.

Remark 11. It is seen that on the contrary of the determination of U and k, the size of the nonlinear system of equations for
the updating of KM increases with M.
5. Results

5.1. Error estimation

For the purpose of convergence analysis, we define the stochastic residual of the equation as
RMðx; hÞ ¼ uM
ouM

ox
	 l o2uM

ox2 ð76Þ
and the corresponding L2-norm
kRMk2 ¼
Z

X
kRMðx; �Þk2

L2ðN;dPnÞdx ¼
Z

X
EðRMðx; �Þ2Þdx: ð77Þ
It is observed that this norm measures the errors due to both stochastic and spatial discretizations. As a results, when
ðM;dimðSÞÞ ! 1, this error is not expected to go to zero but to level off to a finite value corresponding to the spatial dis-
cretization error. However, thanks to the spectral finite element approximation in space, the errors in the following numer-
ical tests are dominated by the stochastic error due to dimðSÞ <1. In fact, in this work, we are more interested by the
analysis of the convergence with M of uM toward the discrete exact solution on Vh � S, and the comparison of the conver-
gence rates of the two algorithms, than in the absolute error. For this purpose, we define the stochastic residual RMðx; hÞ as
the orthogonal projection of RMðx; hÞ on S:
RMðx; hÞ ¼ RMðx; hÞ þ R?Mðx; hÞ; ð78Þ
such that
RMðx; �Þ 2 S; EðR?Mðx; �ÞbÞ ¼ 0; 8b 2 S: ð79Þ
In other words, RMðx; �Þ is the classical Galerkin residual on S,
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RMðx; hÞ ¼
XP

k¼0

Rk
MðxÞWkðhÞ;
where
EðWkWkÞRk
MðxÞ ¼ EðRMðx; �ÞWkð�ÞÞ ¼

XM

i;j¼0

EðkikjWkÞUi
oUj

ox
	
XM

i¼0

EðlkiWkÞ
o2Ui

ox2 :
Its L2-norm is
kRMk2 ¼
Z

X

XP

k¼0

ðRk
MðxÞÞ

2EðWkWkÞ
" #

dx: ð80Þ
It is seen that kRMk, though containing a contribution of the spatial discretization error deemed negligible, essentially mea-
sures the reduced basis approximation error, (i.e. by substituting the ‘‘exact” discrete solution uh 2 Vh � S by uM ¼WM �KM

in the equations). Consequently, we shall refer to RM as the equation residual and to RM as the reduction residual.

5.2. Convergence analysis

To analyze the convergence of the GSD algorithms, we consider the following random viscosity setting:
lðnÞ ¼ l0 þ
XN

i¼1

l0ni; ð81Þ
with all ni being uniformly distributed on (	1, 1), leading to N ¼ ð	1;1ÞN . To ensure the positivity of the viscosity, we must
have l0 > Njl0j. We set l0 ¼ cl0=N, with j c j< 1. For this parametrization, the variance of the viscosity is
Eððl	 l0Þ2Þ ¼ N
3
ðl0Þ2 ¼ c2

3N
ðl0Þ2: ð82Þ
It is remarked that for this parametrization, the density of l depends on N and experience less and less variability as N in-
creases. For the discretization of the stochastic space S, we use multidimensional Legendre polynomials. The mean viscosity
is set to l0 ¼ 0:2 and c ¼ 0:85.

In a first series of tests, we set N ¼ 4 and No ¼ 6, so dimðSÞ ¼ 210, while for the spatial discretization dimðVhÞ ¼ Nx ¼ 200
is used. This spatial discretization allows for accurate deterministic solutions for any realization lðnÞ; n 2 N. If the stochastic
solution was to be found in the full approximation space Vh � S, the size of the nonlinear problem to be solved would be
dimðVhÞ � dimðSÞ ¼ 42;000. In contrast, the reduced basis solution WM �KM has for dimension
M � ðdimðVhÞ þ dimðSÞÞ ¼ 410M.

In Fig. 1, we compare the convergence of Algorithms 1 and 2, as measured by the two residual norms kRMk and kRMk, with
the size M of the reduced basis (left plot) and with the total number of iterations performed on U ¼ FMðkÞ and k ¼ fMðUÞ (right
plot). The stopping criteria is here �s ¼ 10	3.

Focusing first on the reduction residual RM in the left plot, we can conclude that both algorithms converge to the discrete
solution on Vh � S with exponential rate as the dimension M of the reduced basis increases. However, the Algorithm 2 is
more effective in reducing RM , compared to Algorithm 1. Specifically, the exponential convergence rates for kRMk are �1.2
and �0.3 for Algorithms 2 and 1, respectively. Also, the norms kRMk of the equation residual is seen to decrease with the
same rate as kRMk, though thanks to the higher convergence rate of Algorithm 2 it quickly saturate to a finite value (the dis-
cretization error) within just five iterations. For Algorithm 1, the norm of RM has not yet reach it asymptotic value for
M ¼ 10, reflecting the slowest convergence of the solution in Vh � S.

Moreover, inspection of the right plot of Fig. 1 shows that Algorithm 2 requires less iterations on problems U ¼ FMðkÞ and
k ¼ fMðUÞ to yield the next term of the decomposition. Specifically, Algorithm 2 needs 3–4 iterations to meet the stopping
criteria, while Algorithm 1 needs a variable number of iterations between 3 and 8. This difference is essentially explained
by the updating of KM . Indeed, when the orthonormalization of WM in Algorithm 2 is disregarded, the convergence of the
resulting decomposition and number of iterations to yield the couples ðU; kÞ is unchanged (not shown). This confirm the
claim made previously that the orthonormalization of WM is optional. The lower number of iterations needed to yield the
couples and faster convergence of the residuals for Algorithm 2 does not imply a lower computational cost, since the reso-
lution of U ¼ FMðkÞ is inexpensive for the 1-D Burgers equation. In fact, Algorithm 2 requires a significantly larger compu-
tational time for this problem, as most of the CPU-time is spent solving the stochastic update problem KM ¼ fMðWMÞ. This
conclusion will not hold in general for larger problems, (e.g. for Navier–Stokes flows) when the resolution of the determin-
istic problems will dominate the overall CPU-time. Also, computational times are not the only concern and one may prefer to
spent more time computing the reduced modes, to achieve a better reduced basis approximation in order to lower memory
requirements, especially for problems involving large spatial approximation spaces.

To understand the higher efficiency of Algorithm 2, we compare in Fig. 2 the 8 first reduced modes UiðxÞ computed using
the two algorithms. Only half of the domain is shown as the reduced modes are odd functions of x, because of the symmetry
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Fig. 1. Convergence of the reduction residual RM (close symbols) and equation residuals RM (open symbols) for AlgorithmS 1 (squares) and 2 (circles). The
left plot displays the residual norms as a function of the reduced basis dimension M, while the right plot displays the residual norms as a function of the
total (cumulated) number of power-type iterations for the computation of successive couples ðU; kÞ. In the left plot, also reported using solid lines are fits of
kRMk with �expð	1:2MÞ and �expð	0:3M).
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Fig. 2. Comparison of the eight first reduced modes Ui obtained with Algorithms 1 (left plot) and 2 (without orthonormalization of WM).
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of the problem. The comparison clearly shows that Algorithm 2 yields a deterministic reduced basis WM¼8 with a higher fre-
quency content than for this of Algorithm 1. This is explained by the improvement of the approximation brought by the
updating of KM . In fact, because the updating procedure cancels the equation residual in the sub-space spanfWMg � S, the
following deterministic mode U constructed will be essentially orthogonal to WM . On the contrary, Algorithm 1 only approx-
imatively solve the equations in the sub-space spanfWMg � S (i.e. KM–f0ðWMÞ), with a delayed exploration of the determin-
istic space Vh as a result. This point is further illustrated in Fig. 3, where plotted are the second moment of the equation
residual, EðRMðx; �Þ2Þ, for different M and the two algorithms. The plot of EðRMðx; �Þ2Þ for Algorithm 2 highlights the efficiency
of the GSD in capturing the full discrete solution on Vh � S in just few modes and indicates that the stochastic discretization
mostly affect the equation residual in the area where the solution exhibits the steepest gradients, i.e. where the uncertainty
has the most impact on the solution.

It is also remarked that even though the equation residual norm provides a measure of how well the reduced basis
approximation satisfies the Burgers equation, it is not a direct measure of the error on the solution. Specifically, the somehow
large magnitude of kRMk does not imply that the error �M on the solution is as high. The L2	error of the stochastic solution
can in turn be measured using the following norm:
k�Mk2 ¼
Z

X
kuMðx; �Þ 	 uðx; �Þk2

L2ðN;dPnÞdx; ð83Þ
where uM is the GSD solution and u the exact stochastic solution. The exact solution being unknown, one has to rely on
approximate expression for k�Mk. Here, using the fact that the stochastic error dominates the spatial error, we use a vanilla
Monte-Carlo (MC) method to estimate the solution error. We denote udðx; nÞ 2 Vh the deterministic solution of the Burgers
equation for the viscosity realization lðnÞ. We then rely on a uniform random sampling of N, with m sampling points, to con-
struct the stochastic estimator of the local mean square error:
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kuMðx; �Þ 	 uðx; �Þk2
L2ðN;dPnÞ �

1
m

Xm

i¼1

ðuMðx; nðhiÞÞ 	 udðx; nðhiÞÞÞ2: ð84Þ
Using a sample set with dimension m ¼ 10;000 we obtained for the solution computed with Algorithm 2 the estimate
k�M¼10k ¼ ð1:55 0:1Þ10	4, showing that the reduced solution uM is indeed much more accurate than suggested by the norm
of the equation residual. As for the equation residual, we provide in Fig. 4 the spatial distribution for the mean square error
on the solution, for the MC estimate given in Eq. (84) using m ¼ 10; 000 MC samples.

For a better appreciation of the convergence of the solution on the reduced basis, we have plotted in Figs. 5 and 6 the
evolutions of the computed solution mean and standard deviation (EðuMÞ and Std-devðuMÞ) for different M and for the
two algorithms. Again, only half of the domain is shown, the mean (resp. standard deviation) being an odd (resp. even) func-
tion of x. Fig. 5 shows a fast convergence of the mean for the two algorithms: curves are essentially indistinguishable for
M P 3. Analysis of the standard deviation plots in Fig. 6 also reveal a fast convergence, although the faster convergence
of Algorithm 2 compared to Algorithm 1 appears more clearly than for the mean.

5.3. Robustness of the algorithms

We now investigate the robustness of the method with regards to stochastic discretization and numerical parameters.

5.3.1. Impact of �s

The two algorithms require a criteria �s to stop the iterations associated with the construction of a new couple ðU; kÞ (see
Section 3.4.1). Non convergence has not been encountered in our computation. Still, in order to avoid performing unneces-
sary iterations, the selection of an appropriate value for �s in an important issue as slow convergence was reported in some
computations. It also raises questions regarding the accuracy on the computed couples ðU; kÞ needed to construct an appro-
priate reduced basis (see discussion in Section 3.4.1). This aspect is numerically investigated by considering less and less
stringent stopping criteria �s and monitoring the convergence of kRMk. These experiments are reported in Fig. 7, for the pre-
vious viscosity settings, discretization parameters and for �s ¼ 10	2;	3;	4;	6. It is seen that for both algorithms, the selection of
10-6

10-8

10-10

10-12

-1 -0.8 -0.6 -0.4 -0.2  0

m
ea

n 
sq

ua
re

 e
rr

or

x

Fig. 4. MC estimate of the local mean square error on the solution, EððuM 	 uÞ2Þ for M ¼ 10 and Algorithm 2.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.8 -0.6 -0.4 -0.2  0

E
(u

M
(x

,.)
)

x

M=1

M=2

M=3

M=5

M=10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.8 -0.6 -0.4 -0.2  0

E
(u

M
(x

,.)
)

x

M=1

M=2

M=3

M=5

M=10

Fig. 5. Convergence of the solution mean with the size M of the reduced basis, as indicated, and Algorithm 1 (left plot) and 2 (right plot).

 0

 0.05

 0.1

 0.15

 0.2

-1 -0.8 -0.6 -0.4 -0.2  0

S
td

-d
ev

 (
u M

(x
,.)

)

x

M=1

M=2

M=3

M=5

M=10

 0

 0.05

 0.1

 0.15

 0.2

-1 -0.8 -0.6 -0.4 -0.2  0

S
td

-d
ev

 (
u M

(x
,.)

)

x

M=1

M=2

M=3

M=5

M=10

Fig. 6. Convergence of the solution standard deviation with the size M of the reduced basis, as indicated, and Algorithm 1 (left plot) and 2 (right plot).

10
-1

10
-2

10
-3

10
-4

 0  10  20  30  40  50  60  70  80

||R
M

 ||

iterations

εs=10-2

εs=10-3

εs=10-4

εs=10-6

10
-7

10
-5

10
-3

10
-1

 0  5  10  15  20  25  30  35  40  45  50

||R
M

 ||

iterations

εs=10-2

εs=10-3

εs=10-4

εs=10-6

Fig. 7. Convergence with the number of iterations of the reduction residual for different stopping criteria �s as indicated, and Algorithms 1 (left plot) and 2
(right plot).

A. Nouy, O.P. Le Maı̂tre / Journal of Computational Physics 228 (2009) 202–235 217
�s on the range tested has virtually no effect on the convergence of the decomposition, but to be computationally more
demanding as �s decreases. Similar experiences for other viscosity settings (see below) have demonstrated that one usually
has no interest in performing more than 3 to 4 iterations on the computation of couple ðU; kÞ.
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5.3.2. Impact of stochastic polynomial order
In a next series of computations, we vary the polynomial order No ¼ 3; . . . ;7 of the stochastic approximation space S,

while holding N ¼ 4 fixed. Other parameters are the same as previously. These experiments can be understood as a refine-
ment of the stochastic discretization, since dimðSÞ is directly related to No (see Eq. (67)). We then monitor the convergence of
the two GSD algorithms with M for the different orders No. Results are reported in Fig. 8. The plots show that the convergence
of the algorithms get slower as No increases. This is not surprising since increasing No allows to capture more variability in
the solution so that more modes are needed to achieve the same level of accuracy in reduction. Still, one can observe that the
convergence rates tend to level off, denoting the convergence of the stochastic approximation as No increases. In fact, these
results essentially highlight the need of a high polynomial order to obtain an accurate solution for the viscosity settings used.
This is consistent with the decrease in the asymptotic value of the equation residual norm as No increases, as shown in Fig. 9.
Conversely, these computations demonstrate the robustness and stability of the power-type algorithms in constructing
approximations on under-resolved stochastic space S.

5.3.3. Impact of the stochastic dimensionality
As in the previous tests, we want to compare the efficiencies of the algorithms when the dimension of S varies, but now

due to different stochastic dimensionality N of the problem. Since the random viscosity, as previously parameterized, has
decreasing variability when N increases, we need a different parameterization for a fair comparison. The viscosity distribu-
tion is now assumed Log-Normal, with median value �l and coefficient of variation CLN > 1. It means that the probability of
having lðhÞ 2
�l=CLN; �lCLN½ is equal to 0.99. Consequently, l can be parameterized using a normalized normal random var-
iable f as:
Fig. 9.
Algorith
l ¼ exp½�fþ rff
; �f ¼ ln �l; rf ¼
ln CLN

2:95
: ð85Þ
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The random variable f can in turns be decomposed as the sum of N independent normalized random variables ni as follows:
Fig. 10.
indicate
f ¼ 1ffiffiffiffi
N
p

XN

i¼1

ni; ni � Nð0;1Þ: ð86Þ
Therefore, the parameterization lðnÞ with n ¼ fn1; . . . ; nNg 2 N ¼ ð	1;1ÞN is
lðnÞ ¼ �l exp
ln CLNffiffiffiffi

N
p

XN

i¼1

ni

" #
; ni � Nð0;1Þ: ð87Þ
It is stressed that for this parameterization the distribution of l is the same for any N P 1. Indeed, l keeps a log-normal
distribution with constant median and coefficient of variation for any N. However, changing N implies that the stochastic
solution is sought in function space L2ðN;dPnÞwith variable dimensionality for N, such that even if the initial stochastic prob-
lem remains unchanged, the resulting problem to be solved on S � L2ðN;dPnÞ depends on N. In fact, this parametrization of l
is designed to investigate the efficiency of the GSD for the same problem but considered on probability spaces with increas-
ing dimensionalities. Specifically, we use the Hermite Polynomial Chaos system as a basis of S, so for fixed PC order No the
dimension of S increases with N as given by (67). However, the PC solution for N > 1 involves many hidden symmetries, and
we expect the GSD algorithms to ‘‘detect” these structures and to construct effective reduced basis.

We set �l ¼ 0:3;CLN ¼ 3 and No ¼ 6. The projection of l on S can be determined analytically or numerically computed by
solving a stochastic ODE [8]. We compute the GSD of the solutions for N ¼ 2; . . . ;5 using the two algorithms with �s ¼ 10	2.
Results are reported in Fig. 10 where plotted are the norms of residuals RM and RM as a function of the reduced basis dimen-
sion M. The plots show that the convergence of the two algorithms is indeed essentially unaffected by the dimension of N.

5.4. Robustness with regards to input variability

In this paragraph, we investigate the robustness of the power-type algorithms with regards to the variability in l. We rely
on the previous parameterization of the Log-Normal viscosity, with N ¼ 3 and No ¼ 6ðdimðSÞ ¼ 84Þ. In a first series of com-
putations we fix �l ¼ 0:3 and we vary the coefficient of variability CLN in the range [1.5,4]. In a second series of computation,
we fix CLN ¼ 2:5 and we vary the median value �l in the range [0.1, 0.4]. Results are presented for Algorithm 2 only, similar
trends being found for Algorithm 1.

In Fig. 11 we have plotted the reduced basis approximation uM¼10ðxÞ for all the computations, using the classical mean
value 3 standard deviation bars representation (even so this representation is not well suited here as the solution is clearly
non-Gaussian). The plots of the left column correspond to �l ¼ 0:3 and increasing coefficient of variability CLN (from top to
bottom). They show the increasing variability of the solution with CLN while the mean of the solution is roughly unaffected.
On the contrary, the plots of the right column corresponding to CLN ¼ 2:5 and increasing �l (from top to bottom), show a large
impact of the median value of the viscosity on the mean of the solution, together with a non trivial evolution of the solution
variability. Specifically, although the variance of the log-normal viscosity is fixed, the maximum of variance in the solution
increases as �l decreases. This complex dependence of the solution with regards to the viscosity distribution underlines the
strong nonlinear character of the Burgers equation.

Having shortly described the evolutions of the solution with the Log-Normal viscosity distribution, we can now proceed
with the analysis of the convergence of the residuals kRMk shown in Fig. 12. Focusing first on the convergence curves when �l
is fixed (left plot of Fig. 12), it is first observed that the residual magnitude increases with CLN, as one may have expected.
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Then, for the two lowest values of CLN the convergence rates are found roughly equal, while slower convergences are re-
ported for CLN ¼ 3 and 4. This trend can be explained by the increasing level of variability in the solutions for large COV, that
demands more spectral modes to approximate the solution. Note that we have checked that dimðSÞ (i.e. No) was sufficiently
large to account for all the variability in the solution, when CLN ¼ 4, by performing a computation with No ¼ 8, without sig-
nificant change in the solution.

Next, the convergence of the GSD is analyzed for fixed CLN ¼ 2:5 of the viscosity distribution but increasing median value
from 0.1 to 0.4 (right plots of Fig. 12, from top to bottom). A degradation of the convergence rate, and an increasing residual
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magnitude, is observed as �l decreases. This can be jointly explained by the increasing variability in the solution as seen from
Fig. 11, and by the more complex dependence with l of the spatial structure of the solution as �l decreases.

5.5. Convergence of probability density functions

To complete this section, we provide in this paragraph an appreciation of the GSD efficiency in terms of convergence of
the resulting probability density function of the solution uM as M increases. To this end, we set �l ¼ 0:3 and CLN ¼ 3. The
parameterization of the random viscosity uses N ¼ 5 with an expansion order No ¼ 5, such that the dimension of the sto-
chastic approximation space is dimðSÞ ¼ 252. The reduced solution uM is computed using Algorithm 2 with stopping criteria
�s ¼ 0:01. We estimate the probability density function of uMðx; nÞ, from a Monte-Carlo sampling of N. For each sample nðiÞ we
reconstruct the corresponding solution uMðx; nðiÞÞ from:
uMðx; nðiÞÞ ¼
XM

l¼0

UlðxÞklðnðiÞÞ ¼
XM

l¼0

UlðxÞ
XP

k¼0

kk
l WkðnðiÞÞ: ð88Þ
These samples are then used to classically estimate the probability density functions (pdfs) of the solution at some pre-
scribed points. For the analysis, we choose four mesh points which are the closest to x ¼ 	1=8;	1=4;	1=2 and 	3/4. Since
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the reconstruction of the samples has a low computational cost, we use 106 samples to estimate the pdfs. Note that the sam-
ples may also be used to estimate other statistics of the solution, (e.g. its moments).

In Fig. 13, we show the computed pdfs at the four mesh points for different dimensions M of the reduced basis. It is seen
that for M ¼ 1, the reduced approximation provides poor estimates of the pdfs, especially for the points x � 	3=4 and
x � 	1=2 where the probabilities of having u > 1 are significant. For M ¼ 2, we already obtain better estimates of the pdfs,
except for the closest point to the boundary, where M ¼ 3 is necessary to achieve a smooth pdf. Increasing further M leads to
no significant changes in the pdfs. These results are consistent with the previous observations on the convergence of the
mean and standard deviation.

To gain further confidence in the accuracy of the reduced basis approximation, we provide in Fig. 14 a comparison of the
pdfs for uM¼10 with the pdfs constructed from the classical Galerkin polynomial chaos solution on S and a Monte-Carlo sim-
ulation. The Galerkin solution is computed using an exact Newton solver, yielding a quadratic convergence rate: it can be
considered as the exact Galerkin solution on S. The Monte-Carlo simulation is based on a direct sampling of the log-normal
viscosity distribution (and not of N). Only 104 Monte-Carlo samples are used to estimate the pdfs, due to its computational
cost, while the pdfs for the Galerkin solution uses the same 106 samples as the reduced approximation. It is seen in Fig. 14
that the reduced approximation with only M ¼ 10 modes leads to essentially the same pdfs as the full Galerkin solution
which involves 252 modes. Also, they are in close agreement with the Monte-Carlo solution, with only small differences
caused by the lower sampling used.
6. Application to a nonlinear stationary diffusion equation

In this section, we apply the GSD method to a nonlinear stationary diffusion equation with a cubic nonlinearity for which
the mathematical framework can be found in [23]. Associated numerical experiments will be presented in the following Sec-
tion 7.

6.1. Stationary diffusion equation

We consider a stationary diffusion problem defined on a L-shape domain X � R2 represented on Fig. 15: X ¼ ðð0;1Þ�
ð0;2ÞÞ [ ðð1;2Þ � ð1;2ÞÞ.

Homogeneous Dirichlet boundary conditions are applied on a part C1 of the boundary. A normal flux g is imposed on an-
other part C2 of the boundary. The complementary part of the boundary, denoted by C0, is subjected to a zero flux condition.
A volumic source f is imposed on a part X1 ¼ ð1;2Þ � ð1;2Þ of the domain.

The stochastic solution,
Fig. 14
solution
for the
u : ðx; hÞ 2 X�H # uðx; hÞ 2 R; ð89Þ
must satisfy almost surely
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Galerkin and reduced solutions, and direct sampling of the log-normal distribution of l in the Monte-Carlo simulation.
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	r � ððj0 þ j1u2ÞruÞ ¼
0 on X nX1

f on X1

�
; ð90Þ

	 ðj0 þ j1u2Þ ou
on
¼

0 on C0

g on C2

�
; ð91Þ

u ¼ 0 on C1; ð92Þ
where j0 and j1 are conductivity parameters. We consider that conductivity parameters and source terms are uniform in
space. Then, they are modeled with real-valued random variables. The variational formulation writes (2) with:
bðu; t; hÞ ¼
Z

X
ðj0ðhÞ þ j1ðhÞu2Þru � rtdx; ð93Þ

lðt; hÞ ¼
Z

X1

f ðhÞtdxþ
Z

C2

gðhÞtds: ð94Þ
Remark 12. Generalization of the methodology to situations where conductivity parameters or source terms are discretized
stochastic fields is immediate.
6.2. Application of GSD algorithms

We now detail the main ingredients of the GSD algorithms, namely steps (4) and (6) of Algorithm 1, and the update step of
Algorithm 2. To detail the methodology, we write
bðu; t; hÞ ¼ j0ðhÞaðu; tÞ þ j1ðhÞnðu2;u; tÞ; ð95Þ
lðt; hÞ ¼ f ðhÞl1ðtÞ þ gðhÞl2ðtÞ; ð96Þ
where a and n are bilinear and trilinear forms respectively, defined as:
aðu; tÞ ¼
Z

X
ru � rtdx; ð97Þ

nðw; u; tÞ ¼
Z

X
wru � rtdx: ð98Þ
6.2.1. Resolution of U ¼ FMðkÞ
To compute U ¼ FMðkÞ, one has to solve for U the following deterministic problem:
BMðkU; kVÞ ¼ LMðkVÞ 8V 2 V: ð99Þ
where 8u; t 2 V � S,
BMðu; tÞ ¼ BðuM þ u; tÞ 	 BðuM; tÞ; ð100Þ
LMðtÞ ¼ LðtÞ 	 BðuM; tÞ: ð101Þ
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After some manipulations, one obtains for the left-hand side:
BMðkU; kVÞ ¼ ej0aðU;VÞ þ ej1nðU2;U;VÞ þ nðeU ;U2;VÞ þ nðU2; eU ;VÞ þ nðZ;U;VÞ þ nðU; Z;VÞ; ð102Þ
where
ej0 ¼ Eðj0kkÞ; ej1 ¼ Eðj1kkkkÞ; ð103Þ

eU ¼XM

i¼1

Eðj1kkkkiÞUi; ð104Þ

Z ¼
XM

i;j¼1

Eðj1kkkikjÞUiUj: ð105Þ
We observe that the left hand side contains the classical linear and cubic terms with deterministic parameters ej0 and ej1 but
also linear and quadratic additional terms.

For the right-hand side, one obtains the following expression:
LMðkVÞ ¼ ~f l1ðVÞ þ ~gl2ðVÞ 	 að�U;VÞ 	 nð1; bZ ;VÞ; ð106Þ
where
~f ¼ EðfkÞ; ~g ¼ EðgkÞ; ð107Þ

�U ¼
XM

i¼1

Eðj0kkiÞUi; ð108Þ

bZ ¼ 1
3

XM

i;j;k¼1

Eðj1kkikjkkÞUiUjUk: ð109Þ
In the numerical application, this deterministic problem is solved with a classical Newton–Raphson algorithm.

Remark 13. Of course, various equivalent notations could have been introduced for writing left and right-hand sides of the
deterministic problem. The above choice, introducing functions Z and bZ , allows obtaining a compact writing, without
summation on spectral modes. When introducing an approximation at the spatial level, (e.g. finite element approximation),
pre-computing an approximation of functions Z and bZ allows reducing the number of operations to be performed. This leads
to an approximation in the evaluation of left and right-hand sides, and then in the obtained approximate solution, but it can
also lead to significant computational savings.
6.2.2. Resolution of k ¼ fMðUÞ
The random variable k 2 S is solution of the variational problem:
BMðkU; bUÞ ¼ LMðbUÞ 8b 2 S: ð110Þ
After some manipulations, this equation is found to be equivalent to:
Eðbðað1Þkþ að2Þkkþ að3ÞkkkÞÞ ¼ EðbdÞ; ð111Þ
where
að1Þ ¼ j0aðU;UÞ þ
XM

i;j¼1

j1kikj½nðUiUj;U;UÞ þ 2nðUiU;Uj;UÞ
; ð112Þ

að2Þ ¼
XM

i¼1

j1ki½2nðUiU;U;UÞ þ nðU2;Ui;UÞ
; ð113Þ

að3Þ ¼
XM

i;j¼1

j1kikj½nðUiUj;U;UÞ þ 2nðUiU;Uj;UÞ
; ð114Þ

d ¼ fl1ðUÞ þ gl2ðUÞ 	
XM

i¼1

j0kiaðUi;UÞ 	
XM

i;j;k¼1

1
3
j1kikjkknð1;UiUjUk;UÞ: ð115Þ
In the numerical application, this nonlinear equation is solved with a classical Newton algorithm.

6.2.3. Resolution of KM ¼ f0ðWMÞ
To update the random variables KM ¼ ðk1; . . . ; kMÞ 2 ðSÞM , one has to solve:
BðWM �KM;WM �K�MÞ ¼ LðWM �K�MÞ 8K�M 2 ðSÞ
M
: ð116Þ
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This equation can be split into a system of M equations:
8k 2 f1; . . . ;Mg; BðWM �KM ;UkbkÞ ¼ LðUkbkÞ 8bk 2 S: ð117Þ
Introducing the previously defined forms, it comes: 8k 2 f1; . . . ;Mg,
XM

i¼1

j0aðUi;UkÞki þ
XM

i;j;l¼1

j1nðUi;Uj;Ul;UkÞkikjkl ¼ fl1ðUkÞ þ gl2ðUkÞ: ð118Þ
This is a set of M coupled stochastic equations with a polynomial nonlinearity. In the numerical application, this set of equa-
tions is solved with a classical Newton algorithm.

7. Results for the stationary diffusion equation

7.1. Discretization

At the stochastic level, we consider that random variables j0;j1; f and g are parametrized as follows:
j0 ¼ lj0
1þ cj0

ffiffiffi
3
p

n1

� �
j1 ¼ lj1

1þ cj1

ffiffiffi
3
p

n2

� �
f ¼ lf 1þ cf

ffiffiffi
3
p

n3

� �
g ¼ lg 1þ cg

ffiffiffi
3
p

n4

� �

where the ni are 4 independent random variables, uniformly distributed on (	1, 1). Parameters lð�Þ and cð�Þ, respectively cor-
respond to the means and coefficients of variations of the random variables. We then work in the associated 4-dimensional
image probability space ðN;BN; PnÞ, where N ¼ ð	1;1Þ4, and use the same methodology as in Section 4.5 for defining an
approximation space S � L2ðN;dPnÞ based on a generalized polynomial chaos basis (multidimensional Legendre polynomi-
als). We denote by No the polynomial chaos order.

At the space level, we introduce a classical finite element approximation space Vh � V associated with a mesh of X com-
posed by 3-nodes triangles (see Fig. 15).

7.2. Reference solution and error indicator

The reference Galerkin approximate solution uh 2 Vh � S solves:
Bðuh; thÞ ¼ LðthÞ; 8th 2 Vh � S: ð119Þ
To obtain this reference solution, the nonlinear set of equations associated with (119) is solved using a classical modified
Newton method with a very high precision (see Section 7.5 for details on the reference solver).

In order to analyze the convergence of the GSD method, we introduce an error indicator based on the residual of the dis-
cretized problem (119). This error indicator evaluates an error between the truncated GSD and the reference approximate
solution uh but not the error due to spatial and stochastic approximations. A given function t 2 Vh � S is associated with
a vector v 2 RNx � S. We denote by RM 2 Vh � S the reduction residual associated with uM 2 Vh � S and by RM 2 RNx � S

the associated discrete residual, defined as follows: 8t 2 Vh � S, associated with v 2 RNx � S,
EðvTRMÞ ¼ LðtÞ 	 BðuM; tÞ: ð120Þ
An error indicator is then simply defined by the natural L2-norm of the discrete residual, defined by
kRMk2 ¼ EðRT
MRMÞ � kRMk2

: ð121Þ
In the following, we will implicitly use a normalized error criteria kRMk  kRMk=kR0k, where R0 stands for the right-hand side
of the initial nonlinear problem.

7.3. Convergence analysis

To analyze the convergence of the GSD algorithms, we choose the following parameters for defining the basic random
variables:
lj0
¼ 3; lj1

¼ 1:5; lf ¼ 6; lg ¼ 2:25

cj0 ¼ :2; cj1 ¼ :2; cf ¼ :2; cg ¼ :2
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The basis of function space S is composed by multidimensional Legendre polynomials up to degree 5 ðNo ¼ 5Þ, so that
dimðSÞ ¼ ð4þNoÞ!

4!No!
¼ 126. For the spatial finite element discretization, we have dimðVhÞ ¼ 368. If the stochastic solution was

to be found in the full approximation space Vh � S, the size of the nonlinear problem to be solved would be
dimðVhÞ � dimðSÞ ¼ 46;368. In contrast, the reduced basis solution WM �KM has for dimension M � ðdimðVhÞþ
dimðSÞÞ ¼ 494M.

In Fig. 16, we compare the convergence of Algorithms 1 and 2 with the size M of the reduced basis (left plot) and with the
total number of power-type iterations performed for the computation of successive couples ðU; kÞ (right plot). The stopping
criteria for power iterations is here �s ¼ 10	2. Both algorithms rapidly converge to the discrete solution on Vh � S as the
dimension M of the reduced basis increases. Algorithm 2 is more effective in reducing RM , compared to Algorithm 1. Although
Fig. 16 shows that Algorithm 2 requires less power iterations, both algorithms yields relatively similar computational costs
on this particular example. Indeed, the faster convergence of Algorithm 2 is balanced with computational efforts needed for
the updating of random variables. This conclusion will not hold in general for large spatial approximation spaces.

Remark 14. On this example, we observe a quasi-exponential convergence rate for small M and a decreasing of this rate for
larger M. In fact, this is not due to a lack of robustness of the GSD method. It is related to the spectral content of the solution
of this two-dimensional problem. A classical spectral decomposition of the reference solution would reveal the same
convergence behavior.

We compare in Fig. 17 the 12 first deterministic functions Ui computed using the two algorithms. It is seen that Algorithm
2 yields a deterministic reduced basis with a higher frequency content than for this of Algorithm 1. In particular, we observe
that the last modes obtained by Algorithm 2 are essentially orthogonal to the first ones. This is further illustrated in Fig. 18,
Fig. 17. Comparison of the 12 first reduced modes with Algorithms 1 (left plot) and Algorithm 2 (right plot).



Fig. 18. Evolution of the distribution of the second moment of the residual, EðR2
MÞ, for different M and for Algorithms 1 (left column) and 2 (right column).
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where plotted are the second moment of the equation residual, EðR2
MÞ, for different M and for the two algorithms. This plot

also highlights the efficiency of the GSD in capturing the full discrete solution on Vh � S in just few modes and indicates that
the stochastic discretization mostly affects the equation residual in the area where the solution exhibits the steepest gradi-
ents, i.e. where the uncertainty has the most impact on the solution.

Even though the equation residual norm provides a measure of the quality of the approximate solution, it is not a direct
measure of the error on the solution. On Fig. 19, we plot the convergence curves of both algorithms with respect to the
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Fig. 19. Convergence of kRMk and kuM 	 uhk=kuhk for Algorithm 1 (solid line) and Algorithm 2 (dashed line).



Fig. 20. Distribution of the relative error in mean ðemeanÞ and standard deviation ðeStdÞ for Algorithms 1 (first and third columns) and 2 (second and fourth
columns) and different M.
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residual norm and also with respect to the L2-norm on the solution. We observe that the error on the solution is significantly
lower than the error based on the residual.

For a better appreciation of the convergence of the GSD, we have plotted in Fig. 20 the distributions of the relative errors
in mean emean and standard deviation eStd for different M and for the two algorithms:
emean ¼
jEðuMÞ 	 EðuhÞj

supðjEðuhÞjÞ

eStd ¼
jStdðuMÞ 	 StdðuhÞj

supðStdðuhÞÞ
We observe a very fast convergence of the GSD decomposition with both algorithms, with a faster convergence of Algorithm
2. With only M ¼ 4 modes, the relative error on these first two moments is inferior to 10	3. On Fig. 21, we have also plotted
the convergence of probability density functions (pdfs) of the solution at two different points. We observe that approximate
pdfs and reference pdf are essentially indistinguishable for M P 5. We also observe the superiority of Algorithm 2, which
yields more accurate pdfs with a lower order M of decomposition.

7.4. Robustness of the algorithms

We now investigate the robustness of the method with regards to stochastic discretization and numerical parameters.

7.4.1. Impact of �s

We first evaluate the impact of the criterium �s to stop the power iterations associated with the construction of a new
couple ðU; kÞ (see Section 3.4.1). For that, we here consider less and less stringent stopping criteria �s and monitor the con-
vergence of RM . These experiments are reported in Figs. 22 and 23, for the previous probabilistic setting and discretization
parameters, and for �s ¼ f5:10	1;10	1;10	2;10	3g. It is seen that for both algorithms, the selection of �s on the range tested
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has virtually no effect on the convergence of the decomposition, but is computationally more demanding as �s decreases. In
practise, it is not necessary to perform more than 3 or 4 power iterations to build a new couple ðU; kÞ (same observation as
for the Burgers problem).

7.4.2. Impact of stochastic polynomial order
In a next series of computations, we vary the polynomial order No ¼ 4;5;6 of the stochastic approximation space S,

respectively corresponding to dimðSÞ ¼ 70;126;210. Fig. 24, where plotted are the convergence curves for Algorithm 1 (left
plot) and Algorithm 2 (right plot), shows that the polynomial order have a very low influence on the convergence. On this
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example, this can be explained by the fact that the error induced by the approximation at the stochastic level is lower that
the error induced by the truncation of the GSD.

7.4.3. Impact of the input variability
We now investigate the robustness of GSD algorithms with respect to the input variability. We first vary the coefficients

of variations cð�Þ of all random variables at the same time. Fig. 25 shows the convergence with M for Algorithm 1 (left plot)
and Algorithm 2 (right plot) for different coefficients of variation: cð�Þ ¼ 0:1;0:2;0:3. It is observed that the convergence rate
decreases with the coefficient of variation, which is a usual property of spectral decompositions. However, the monotonic
convergence illustrates the robustness of GSD algorithms in a wide range of input variability.

We now investigate the impact of the nonlinearity by varying the mean lj1
of parameter j1, letting all the coefficients of

variations equal to cð�Þ ¼ 0:2. Fig. 25 shows the convergence with M for Algorithm 1 (left plot) and Algorithm 2 (right plot) for
different lj1

¼ 1:5;0:5;0:1;0:01;0. We first observe that the convergence rate decreases as the nonlinear term magnitude
increases. This can be explained by the fact that the nonlinearity induces a more complex solution, which requires more
spectral modes to be correctly captured.

For the case lj1
¼ 0, corresponding to the limit linear case, we observe that both algorithms capture the exact discrete

solution in only 2 modes (at the computer numerical precision). We could have expected this property since it is clear on
this example that only two modes are required to exactly represent the solution of the linear problem. Indeed, the two deter-
ministic functions U1 and U2 which solves
aðU1;VÞ ¼ l1ðVÞ and aðU2;VÞ ¼ l2ðVÞ; 8V 2 Vh;
yield an exact decomposition when associated to the ad hoc random variables. In fact, every couple of deterministic func-
tions in the span of these functions yields an exact decomposition. This example shows that in this particular case, GSD algo-
rithms allows capturing these ideal decompositions automatically.



1 2 3 4 5 6 7 8 9 10
10

–4

10
–3

10
–2

10
–1

10
0

M

|| 
R

M
 ||

cov = 10%
cov = 20%
cov = 30%

1 2 3 4 5 6 7 8 9 10
10

–5

10
–4

10
–3

10
–2

10
–1

10
0

M

|| 
R

M
 ||

cov = 10%
cov = 20%
cov = 30%

Fig. 25. Impact of the input variability: convergence of Algorithms 1 (left plot) and 2 (right plot), for different coefficients of variation (cov) of the four
random variables, as indicated.

A. Nouy, O.P. Le Maı̂tre / Journal of Computational Physics 228 (2009) 202–235 231
7.5. Computation times

In this section, we illustrate the efficiency of the GSD method in terms of computation times. GSD algorithms are com-
pared with a classical modified Newton algorithm for solving the reference Galerkin system of Eq. (119). A classical Newton
method consists in the following iterations: starting from uh;ð0Þ ¼ 0, iterates uh;ðiÞ ¼ 0 are defined by
B0ðuh;ðiþ1Þ; th; uh;ðiÞÞ ¼ LðthÞ 	 Bðuh;ðiÞ; thÞ 8th 2 Vh � S ð122Þ
where B0ð�; �; uÞ is the Gateaux derivative of semilinear form B evaluated at u:
B0ðw; t; uÞ ¼ lim
�
! 0

1
�
ðBðuþ �w; tÞ 	 Bðu; tÞÞ

¼ Eðj0aðw; tÞ þ j1ð2nðwu;u; tÞ þ nðu2;w; tÞÞÞ ð123Þ
In order to reduce computation times of this reference solver, we use the following modification of iteration (122):
eB 0ðuh;ðiþ1Þ; th; Eðuh;ðiÞÞÞ ¼ LðthÞ 	 Bðuh;ðiÞ; thÞ 8th 2 Vh � SeB 0ðw; t; uÞ :¼ Eðlj0
aðw; tÞ þ lj1

ð2nðwu;u; tÞ þ nðu2;w; tÞÞÞ ð124Þ
where eB0 is a simple approximation of B obtained by replacing random parameters j0 and j1 by their respective mean values.
Moreover, eB0 is evaluated at Eðuh;ðiÞÞ instead of uh;ðiÞ. With these approximations, iteration (124) corresponds to a stochastic
problem with a random right-hand side and a deterministic operator. The computation cost of this reference solver is then
essentially due to the computation of the residual (right-hand side).

For the present example and moderate input variability, the proposed modified Newton algorithm have good conver-
gence properties (see Fig. 26).
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Remark 15. For large variability of the input data, the efficiency of the proposed modified Newton method deteriorates. A
better approximation of B0ð�; �; uh;ðiÞÞ should be provided in order to keep good convergence properties of the Newton
algorithm. The robustness and efficiency of GSD algorithms are less affected by this increase in the input variability, as seen
in Section 7.4.3.

For both GSD Algorithms 1 and 2, we take �s ¼ 10	1 for the stopping criteria for power iterations. Fig. 27 shows the evo-
lution of the residual norm with respect to computational time for the reference solver and for GSD algorithms. We clearly
observe a computational gain with GSD algorithms (factor � 6). We also observe that GSD Algorithms 1 and 2 lead to similar
computational times. In fact, the computational time required by the updating step in Algorithms 2 is balanced by the fact
that Algorithms 2 needs for a lower order of decomposition than Algorithm 1 for the same accuracy.

To go further in the comparison of computational costs, we analyze the influence on convergence properties of the dimen-
sions P and Nx of stochastic and deterministic approximation spaces. We consider four finite element meshes corresponding
respectively to Nx ¼ 178;368;726 and 1431. We also consider different polynomial chaos degrees No ¼ 3;4;5 and 6, respec-
tively corresponding to P ¼ 34;69;125 and 209.

Figs. 28 and 29 show the convergence curves (residual norm versus computation time) for different Nx and No. We ob-
serve that when increasing the dimension of approximation spaces, the efficiency of the reference solver rapidly deteriorates.
GSD algorithms are far less affected by this increase of the dimension of approximation spaces.

Fig. 30 shows the gains in terms of computational times with respect to Nx � P (for different discretizations at stochastic
level and deterministic level). The gain is computed by comparing computational times for the different algorithms to reach
a given relative residual error of 5:10	2. This accuracy is sufficient to obtain very accurate approximations in terms of mo-
ments, pdfs. This accuracy corresponds to the computation of 4 or 5 GSD modes. We clearly observe that GSD algorithms lead
to computational savings which increase with the dimension of approximation spaces. GSD Algorithms 1 and 2 lead to sim-
ilar computational savings. For the finest discretizations, computational times are here divided by a factor up to 100.
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8. Conclusion

In this paper, we have proposed an extension of the generalized spectral decomposition method and related numerical
procedures, initially proposed in [27,28] for linear problems, to the resolution of nonlinear stochastic problems in the context
of Galerkin methods. The main features of the method is the approximation of the solution on reduced bases, automatically
generated by the algorithms, with significant reduction of the computational requirements compared to the classical Galer-
kin projection schemes, and the independence of the methodology with regard to the type of stochastic discretization used.

Two nonlinear test problems have served as examples to detail the methodology and to show the effectiveness of the pro-
posed algorithms. Specifically, it has been shown that the algorithms lead to solution methods consisting in the resolution of
a series of decoupled deterministic and low-dimensional stochastic problems. An interesting point to be underlined is the
structure of the deterministic problems to be solved which inherit the properties and dimension of the initial deterministic
problem, with the introduction of few additional terms: only slight adaptations of available deterministic codes are required
compared to the classical Galerkin method. Although being closely related to the polynomial character of the nonlinearities
in the test problems, this property already makes the GSD very attractive as a generic solution method for a large class of
models, (e.g. the incompressible Navier–Stokes equations).

For the two test problems, the numerical experiments have shown the effectiveness of the proposed algorithms to yield
reduced decompositions that approximate the stochastic solution with a small number of modes compared to the dimension
of the complete approximation space. For the second algorithm, the convergence of the reduced approximation is essentially
governed by the actual spectrum of the stochastic solution, and not by the dimension of the approximation space, as one may
have anticipated from theoretical considerations. Also, Algorithm 1 is less efficient than Algorithm 2 in terms of accuracy for
an equal number of modes in decomposition, but is computationally less expensive and simpler. This is however not enough
to establish the general superiority of an algorithm over the other, as different aspects such as relative computational times
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for the deterministic and stochastic (update) problems, memory requirement and computational complexity intervene
depending on the considered model and available resources. However, a common character of the two algorithms is their
ability to yield the successive modes of the decomposition in only a few resolutions of the deterministic problem, thus
implying large computational savings compared to the classical stochastic Galerkin method.

A potential improvement of the method, currently under investigation, concerns the implementation of alternative algo-
rithms for the construction of the decomposition modes using advanced sub-space techniques, (e.g. Arnoldi, see [28]) in or-
der to drastically decrease the number of deterministic and reduced stochastic problems to be solved. Ongoing works are
also focusing on applications of GSD to large scale problems, (e.g. the Navier–Stokes equations) and extension to nonlinear
unsteady problems.
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